Spatial representation of hydrocarbon odorants in the ventrolateral zones of the rat olfactory bulb.

نویسندگان

  • Kei M Igarashi
  • Kensaku Mori
چکیده

The glomerular sheet of the olfactory bulb (OB) forms odorant receptor maps that are parceled into zones. We previously reported the molecular receptive range (MRR) property of individual glomeruli in the dorsal zone (zone 1) of the OB and showed that polar functional groups play a major role in activating glomeruli in this zone. However, the MRR property of glomeruli in zones 2-4 is not well understood yet. Using the method of intrinsic signal imaging, we recorded odorant-induced glomerular activity from the ventrolateral surface (zones 2-4) of rat OB. While hydrocarbon odorants that lack polar functional groups activate only a few glomeruli in zone 1, we found that a series of hydrocarbon odorants consistently activated many glomeruli in the ventrolateral surface. The hydrocarbon-responsive glomeruli were grouped into two clusters; glomeruli in one cluster (cluster H) responded to benzene-family hydrocarbons but not to cyclic terpene hydrocarbons. Glomeruli in the other cluster (cluster I) responded to both classes of hydrocarbons. Detailed analyses of MRR properties of individual glomeruli using hydrocarbon odorants and polar-functional-group-containing odorants showed that the common and characteristic molecular features effective in activating glomeruli in the clusters H and I are the hydrocarbon skeleton. These results suggest that ORs represented by glomeruli in these clusters recognize primarily the hydrocarbon skeleton of odorants, and thus imply a systematic difference in the manner of recognizing odorant molecular features between ORs in zone 1 and ORs in zones 2-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Analysis of Coding for Molecular Properties in the Olfactory Bulb

The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB), glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localizat...

متن کامل

Odor maps in the dorsal and lateral surfaces of the rat olfactory bulb.

The surface of the mammalian olfactory bulb (OB) is covered by numerous glomeruli. Since individual glomeruli represent a single odorant receptor (OR) among a repertoire of nearly 1000 ORs, the spatial assembly of the glomeruli forms the maps of ORs. How are the numerous ORs represented spatially in the glomerular maps? Studies of mapping of odorant-induced glomerular activity using the optical...

متن کامل

Topographic representation of odorant molecular features in the rat olfactory bulb.

Individual glomeruli in the mammalian olfactory bulb (OB) most probably represent a single odorant receptor (OR). The assembly of glomeruli thus forms the maps of ORs. How is the approximately 1,000 ORs represented spatially in the glomerular map? Using the method of optical imaging of intrinsic signals and systematic panels of stimulus odorants, we recorded odorant-induced glomerular activity ...

متن کامل

Functional mapping of the rat olfactory bulb using diverse odorants reveals modular responses to functional groups and hydrocarbon structural features.

In an effort to understand the olfactory code of rats, we collected more than 1,500,000 measurements of glomerular activity in response to 54 odorants selected to provide differences in functional groups and hydrocarbon structure. Each odorant evoked a unique response pattern by differentially stimulating clusters of glomeruli, called modules. Odorants sharing specific aspects of their structur...

متن کامل

Spatial and temporal distribution of odorant-evoked activity in the piriform cortex.

Despite a remarkably precise spatial representation of odorant stimuli in the early stages of olfactory processing, the projections to the olfactory (piriform) cortex are more diffuse and show characteristics of a combinatorial array, with extensive overlap of afferent inputs and widespread intracortical association connections. Furthermore, although there is increasing evidence for the importa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2005